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Common Techniques for sampling a distribution

@ GANs: Generate Py(X|z) given z ~ N(0,1) and train with
discriminator Dy({0, 1}|X).
» Doesn't require calculating log-likelihoods.
» No need for encoder network.

o VAEs!: Generate Py(X|z) given z ~ E(z|X). However, calculating
E(z|X) is hard and is approximated by a parametric Qy(z|X).
Assuming some prior over z i.e. P(z) we solve for

arger(r;ax ELBO(0, ¢, X) = E[logPy(X|z)] — Dkr[Qys(z]|X)||P(2)]

Can calculate only a lower-bound of log-likelihood

@ Normalizing Flows : Exact calculation of log-likelihood possible

@ MCMC : Exact calculation for gradient of log-likelihood
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What is Normalizing Flows?3 ?
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Given a random variable z ~ 7(z), we create another random variable
x = f(z) s.t. z= f~1(x) exists. Technique to infer p(x) from 7(z) is
called normalizing flows.

Intuitively, [ p(x)dx = [7(z)dz =1 <= p(x)|dx| = (z)|dz| i.e. we
scale the two distributions by the size of their respective rectangle. For
multivariate case, = p(x) = 7(z) |det Z| = 7(f1(x)) ‘detdﬁl

dx

If x =2z =frofx_10---0Ff(z) J

logp(x) = logmk(zk) = logmo(z0)— Zf-;l log ‘det dgfil‘
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Problem Statement

Problem? : Sample from a distribution p(x) o e~ (x) given black box
access to f and Vf

o Latent modeling : Suppose we have a data generation model
po(x|h) and a prior over latent variables py(h) then we obtain a
distribution over latent variables as

po(hx) oc po(x|h)p(h)

o Energy based models : In a dynamic system, a particle is most
likely to be present in region where energy is minimum. It's
probability distribution is defined as

p(x) oc e EK)
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Markov Chains °

Let's see the cow surface distribution example for some motivation.
Definition

Let D be a finite set. A random process Xi, X, --- with values in D is

called a Markov chain if
P{Xn—I—l = Xn+1|Xn =Xp, "+, X0 = XO} =5 'D{Xn+1 = Xn+1|Xn = Xn}

Definition
The matrix ™ = (pjj)ijep is called the transition probability matrix. pj; is
the probability of transition from state / to state j Vn.

For example, P{X, = j|Xo = i} = Pi{ Xy, = j} = (7");

Definition

A Markov chain X, is called ergodic if the limit ['(j) = limp—oo Pi{ Xy = Jj}
exists for every state j and does not depend on the initial state /. The
D-vector [ is called the stationary probability. This implies [ = I'w
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https://youtu.be/0MzH69hFdkE?t=195

Metropolis(-Hastings) algorithm °
@ We wish to draw samples from some probability distribution without
knowing its exact height at any point.
e Key Idea 7 : “Wander around” on that distribution in such a way that

the amount of time spent in each location is proportional to the
height of the distribution.

Consider a probability distribution P(x) (a.k.a target distribution) that can
only be evaluated only upto a scale by a function f(x) i.e. f(x) o P(x)
o Initialize x; ~ Q(x|y) = N(y,0)
e For
Generate a candidate x ~ Q(x|x¢)

f<) [ P(x)
f(xt) P(x)

This is used to decide whether to accept or reject the new candidate.
Generate a uniform random number u € [0, 1]
If u < athen x;11 = x else, xp11 = X

e End for )

Kunal Gupta (UC San Diego) September 29, 2020 6/13

Calculate acceptance ratio a =




Why Metropolis-Hastings work 7 ?

@ We wish to construct a transition matrix m that yields a stationary
distribution I' = P o f which is same as our target distribution P

@ Recall that I'(y) = I'(x)w(x, y) for stationary distribution I
@ This must also be true for ['(x) = ['(y)7(y, x)
@ Therefore 7 should be such that I'(x)7(x,y) = ['(y)7(y, x) is true

e Choosing 7(x,y) = min (1, %) does the trick
@ Note: Instead of evaluating I'(.) we use f(.) as [ o f

@ In summary, if the probability of x — y is higher than we reduce it to
match the probability of y — x
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Metropolis-Adjusted Langevin Algorithm (MALA)

@ We wish to generate candidates more intelligently.
o Instead generate candidate x' = Viog f(x;) + ¢, € ~ N(x¢, 0¢)

@ Note: Since f x P = Vlogf = VlogP. No need to calculate
normalizing factor!

@ However, there is an interesting alternative to this!

@ Consider the set of equations
Xe41 = Xt — NV F(x¢) (GradientDescent)

xe41 = Xt — NV (xt) + €, € ~ N(x¢,0¢) (Langevin — MC)

e What happens as Vf — 0 (optimum) ?
@ While GD reaches optimum, LM reaches the target distribution.

@ It can be shown that with small » MH almost always selects the
candidate®. There we can avoid MH step altogether!
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http://www.andrew.cmu.edu/user/aristesk/gd_ld_animated.gif

Learning a Score function

Let’s assume that g(x) is the true distribution and p(x; ) is a
parameterized function (neural network) that approximated g(x) upto a
scale. The core principle of score matching is to learn 6 so that

U(x;0) = %}EX;” best matches the corresponding score of the true
distribution i.e. a/%z(x)

objective:

. We therefore aim to minimize the following

1 ol X
Jesul6) = Eqgy | 5100 0) - P52

We can show that this objective is equivalent to

) = Eqy [r(T0050) + 3 [0 0] + €

Provided that g(x)¢(x; #) — 0,x — £oo. Another intuition can be that
the gradient v(x; #) of the log density at some corrupted point X should
ideally move us towards the clean sample x.
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