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Common Techniques for sampling a distribution

GANs: Generate Pθ(X |z) given z ∼ N (0, 1) and train with
discriminator Dφ({0, 1}|X ).

I Doesn’t require calculating log-likelihoods.
I No need for encoder network.

VAEs1: Generate Pθ(X |z) given z ∼ E (z |X ). However, calculating
E (z |X ) is hard and is approximated by a parametric Qφ(z |X ).
Assuming some prior over z i.e. P(z) we solve for

arg max
θ,φ

ELBO(θ, φ,X ) = E[logPθ(X |z)]− DKL[Qφ(z |X )||P(z)]

=⇒ Qφ∗(z |X ) ≈ E (z |X )

Can calculate only a lower-bound of log-likelihood

Normalizing Flows : Exact calculation of log-likelihood possible

MCMC : Exact calculation for gradient of log-likelihood
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What is Normalizing Flows2,3 ?

Given a random variable z ∼ π(z), we create another random variable
x = f (z) s.t. z = f −1(x) exists. Technique to infer p(x) from π(z) is
called normalizing flows.

Intuitively,
∫
p(x)dx =

∫
π(z)dz = 1 ⇐⇒ p(x)|dx | = π(z)|dz | i.e. we

scale the two distributions by the size of their respective rectangle. For

multivariate case, =⇒ p(x) = π(z)
∣∣det dzdx ∣∣ = π(f −1(x))

∣∣∣det df −1

dx

∣∣∣
If x = zk = fk ◦ fk−1 ◦ · · · ◦ f1(z0)

logp(x) = logπk(zk) = logπ0(z0)−
∑k

i=1 log
∣∣∣det dfi

dzi−1

∣∣∣
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Problem Statement

Problem4 : Sample from a distribution p(x) ∝ e−f (x) given black box
access to f and ∇f

Latent modeling : Suppose we have a data generation model
pθ(x |h) and a prior over latent variables pθ(h) then we obtain a
distribution over latent variables as

pθ(h|x) ∝ pθ(x |h)p(h)

Energy based models : In a dynamic system, a particle is most
likely to be present in region where energy is minimum. It’s
probability distribution is defined as

p(x) ∝ e−E(x)
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Markov Chains 5

Let’s see the cow surface distribution example for some motivation.

Definition

Let D be a finite set. A random process X1,X2, · · · with values in D is
called a Markov chain if
P{Xn+1 = xn+1|Xn = xn, · · · ,X0 = x0} = P{Xn+1 = xn+1|Xn = xn}

Definition

The matrix π = (pij)i ,j∈D is called the transition probability matrix. pij is
the probability of transition from state i to state j ∀n.

For example, P{Xn = j |X0 = i} = Pi{Xn = j} = (πn)ij

Definition

A Markov chain Xn is called ergodic if the limit Γ(j) = limn→∞Pi{Xn = j}
exists for every state j and does not depend on the initial state i . The
D-vector Γ is called the stationary probability. This implies Γ = Γπ

Kunal Gupta (UC San Diego) MC lab Discussions September 29, 2020 5 / 13

https://youtu.be/0MzH69hFdkE?t=195


Metropolis(-Hastings) algorithm 6

We wish to draw samples from some probability distribution without
knowing its exact height at any point.

Key Idea 7 : “Wander around” on that distribution in such a way that
the amount of time spent in each location is proportional to the
height of the distribution.

Consider a probability distribution P(x) (a.k.a target distribution) that can
only be evaluated only upto a scale by a function f (x) i.e. f (x) ∝ P(x)

Initialize xt ∼ Q(x |y) = N (y , σ)

For
I Generate a candidate x

′ ∼ Q(x
′ |xt)

I Calculate acceptance ratio α = f (x
′
)

f (xt)

(
= P(x

′
)

P(x)

)
This is used to decide whether to accept or reject the new candidate.

I Generate a uniform random number u ∈ [0, 1]
I If u ≤ α then xt+1 = x

′
else, xt+1 = xt

End for
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Why Metropolis-Hastings work 7 ?

We wish to construct a transition matrix π that yields a stationary
distribution Γ ≈ P ∝ f which is same as our target distribution P

Recall that Γ(y) = Γ(x)π(x , y) for stationary distribution Γ

This must also be true for Γ(x) = Γ(y)π(y , x)

Therefore π should be such that Γ(x)π(x , y) = Γ(y)π(y , x) is true

Choosing π(x , y) = min
(

1, Γ(y)
Γ(x)

)
does the trick

Note: Instead of evaluating Γ(.) we use f (.) as Γ ∝ f

In summary, if the probability of x → y is higher than we reduce it to
match the probability of y → x
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Metropolis-Adjusted Langevin Algorithm (MALA)

We wish to generate candidates more intelligently.

Instead generate candidate x
′

= ∇log f (xt) + ε, ε ∼ N (xt , σt)

Note: Since f ∝ P =⇒ ∇logf = ∇logP. No need to calculate
normalizing factor!

However, there is an interesting alternative to this!

Consider the set of equations

xt+1 = xt − η∇f (xt) (GradientDescent)

xt+1 = xt − η∇f (xt) + ε, ε ∼ N (xt , σt) (Langevin −MC )

What happens as ∇f → 0 (optimum) ?

While GD reaches optimum, LM reaches the target distribution.

It can be shown that with small η MH almost always selects the
candidate8. There we can avoid MH step altogether!
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Learning a Score function
Let’s assume that q(x) is the true distribution and p(x ; θ) is a
parameterized function (neural network) that approximated q(x) upto a
scale. The core principle of score matching is to learn θ so that
ψ(x ; θ) = ∂logp(x ;θ)

∂x best matches the corresponding score of the true

distribution i.e. ∂logq(x)
∂x . We therefore aim to minimize the following

objective:

JESM(θ) = Eq(x)

[
1

2
||ψ(x ; θ)− ∂logq(x)

∂x
||2
]

We can show that this objective is equivalent to

JISM(θ) = Eq(x)

[
tr(∇ψ(x ; θ)) +

1

2
||ψ(x ; θ)||2

]
+ C

Provided that q(x)ψ(x ; θ)→ 0, x → ±∞. Another intuition can be that
the gradient ψ(x ; θ) of the log density at some corrupted point x̃ should
ideally move us towards the clean sample x .
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The End
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